
Evil
Release 1.13.1

Mar 04, 2020

Copyright 2011-2019, Eivind Fonn, Frank Fischer, Vegard Øye.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation License”.

The Evil team thanks everyone at gmane.emacs.vim-emulation for their feedback and contributions.

Contents

1 Overview 1
1.1 Installation via package.el . 1
1.2 Manual installation . 1
1.3 Modes and states . 2

2 Settings 3
2.1 The initial state . 3
2.2 Keybindings and other behaviour . 4
2.3 Search . 5
2.4 Indentation . 5
2.5 Cursor movement . 5
2.6 Cursor display . 6
2.7 Window management . 7
2.8 Parenthesis highlighting . 7
2.9 Miscellaneous . 7

3 Keymaps 9
3.1 evil-define-key . 10
3.2 Leader keys . 11

4 Hooks 13

5 Extension 15
5.1 Motions . 15
5.2 Operators . 16
5.3 Text objects . 16
5.4 Range types . 17
5.5 States . 18

6 Frequently Asked Questions 19
6.1 Problems with the escape key in the terminal . 19
6.2 Underscore is not a word character . 20

7 Internals 21
7.1 Command properties . 21

8 The GNU Free Documentation License 23

i

Emacs lisp functions and variables 29

ii

CHAPTER 1

Overview

Evil is an extensible vi layer for Emacs. It emulates the main features of Vim,1 turning Emacs into a modal
editor. Like Emacs in general, Evil is extensible in Emacs Lisp.

1.1 Installation via package.el

Evil is available as a package from MELPA stable and MELPA unstable. This is the recommended way of
installing Evil.

To set up package.el to work with one of these repositories, you can follow the instructions on melpa.org.

Once that is done, you can execute the following commands:

M-x package-refresh-contents
M-x package-install RET evil RET

Finally, add the following lines to your Emacs init file:

(require 'evil)
(evil-mode 1)

1.2 Manual installation

First, install undo-tree, goto-chg and cl-lib. If you have an Emacs version of 24.3 or newer, you should already
have cl-lib.

Evil lives in a git repository. To download Evil, do:

1 Vim is the most popular version of vi, a modal text editor with many implementations. Vim also adds some functions of its own,
like visual selection and text objects. For more information see the official Vim website.

1

https://melpa.org/#/getting-started
https://vim.org

Evil, Release 1.13.1

git clone --depth 1 https://github.com/emacs-evil/evil.git

Then add the following lines to your Emacs init file:

(add-to-list 'load-path "path/to/evil")
(require 'evil)
(evil-mode 1)

Ensure that your replace path/to/evil with the actual path to where you cloned Evil.

1.3 Modes and states

The next time Emacs is started, it will come up in normal state, denoted by <N> in the mode line. This is
where the main vi bindings are defined. Note that you can always disable normal state with C-z, which
switches to an “Emacs state” (denoted by <E>) in which vi keys are completely disabled. Press C-z again to
switch back to normal state.

state Evil uses the term state for what is called a “mode” in regular vi usage, because modes are understood
in Emacs terms to mean something else.

Evil defines a number of states by default:

normal state (<N>) This is the default “resting state” of Evil, in which the main body of vi bindings are
defined.

insert state (<I>) This is the state for insertion of text, where non-modified keys will insert the correspond-
ing character in the buffer.

visual state (<V>) A state for selecting text regions. Motions are available for modifying the selected region,
and operators are available for acting on it.

replace state (<R>) A special state mostly similar to insert state, except it replaces text instead of inserting.

operator-pending state (<O>) A special state entered after launching an operator, but before specifying the
corresponding motion or text object.

motion state (<M>) A special state useful for buffers that are read-only, where motions are available but
editing operations are not.

Emacs state (<E>) A state that as closely as possible mimics default Emacs behaviour, by eliminating all vi
bindings, except for C-z, to re-enter normal state.

2 Chapter 1. Overview

CHAPTER 2

Settings

Evil’s behaviour can be adjusted by setting some variables. The list of all available variables and their
current values can be inspected by doing:

M-x customize-group RET evil RET

To change the value of a variable, you can use this interface, or add a setq form to your Emacs init file,
preferably before Evil is loaded.1

(setq evil-shift-width 0)
;; Load Evil
(require 'evil)

What follows is a non-exhaustive list of the most relevant customization options.

2.1 The initial state

The initial state of a buffer is determined by its major mode. Evil maintains an association be-
tween major modes and their corresponding states, which is most easily modified using the function
evil-set-initial-state.

(evil-set-initial-state MODE STATE)
Set the initial state for major mode MODE to STATE. This is the state the buffer comes up in.

If no state can be found, Evil uses the default initial state.

evil-default-state
The default Evil state. This is the state a buffer starts in when it is not otherwise configured (see
evil-set-initial-state and evil-buffer-regexps). The value may be one of normal, insert, visual,
replace, operator, motion and emacs.

Default: normal
1 Strictly speaking, the order only matters if the variable affects the way Evil is loaded. This is the case with some variables.

3

Evil, Release 1.13.1

Alternatively, it is possible to select the initial state based on the buffer name rather than its major mode.
This is checked first, so it takes precedence over the other methods for setting the state.

evil-buffer-regexps
Regular expressions determining the initial state for a buffer. Entries have the form (REGEXP . STATE),
where REGEXP is a regular expression matching the buffer’s name and STATE is one of normal,
insert, visual, replace, operator, motion, emacs and nil. If STATE is nil, Evil is disabled in the
buffer.

Default: (("^ *load*"))

2.2 Keybindings and other behaviour

Evil comes with a rich system for modifying its key bindings Keymaps. For the most common tweaks, the
following variables are available.

evil-toggle-key
The key used to change to and from Emacs state. Must be readable by read-kbd-macro. For example:
“C-z”.

Default: "C-z"

evil-want-C-i-jump
Whether C-i jumps forward in the jump list (like Vim). Otherwise, C-i inserts a tab character.

Default: t

evil-want-C-u-delete
Whether C-u deletes back to indentation in insert state. Otherwise, C-u applies a prefix argument. The
binding of C-u mirrors Emacs behaviour by default due to the relative ubiquity of prefix arguments.

Default: nil

evil-want-C-u-scroll
Whether C-u scrolls up (like Vim). Otherwise, C-u applies a prefix argument. The binding of C-u
mirrors Emacs behaviour by default due to the relative ubiquity of prefix arguments.

Default: nil

evil-want-C-d-scroll
Whether C-d scrolls down (like Vim).

Default: t

evil-want-C-w-delete
Whether C-w deletes a word in Insert state.

Default: t

evil-want-C-w-in-emacs-state
Whether C-w prefixes windows commands in Emacs state.

Default: nil

evil-want-Y-yank-to-eol
Whether Y yanks to the end of the line. The default behavior is to yank the whole line, like Vim.

Default: nil

evil-disable-insert-state-bindings
Whether insert state bindings should be used. Bindings for escape, delete and evil-toggle-key are
always available. If this is non-nil, default Emacs bindings are by and large accessible in insert state.

4 Chapter 2. Settings

Evil, Release 1.13.1

Default: nil

2.3 Search

evil-regexp-search
Whether to use regular expressions for searching in / and ?.

Default: t

evil-search-wrap
Whether search with / and ? wraps around the buffer. If this is non-nil, search stops at the buffer
boundaries.

Default: t

evil-flash-delay
Time in seconds to flash search matches after n and N.

Default: 2

evil-ex-hl-update-delay
Time in seconds of idle before updating search highlighting. Setting this to a period shorter than that
of keyboard’s repeat rate allows highlights to update while scrolling.

Default: 0.02

2.4 Indentation

evil-auto-indent
Whether to auto-indent when opening lines with o and O.

Default: t, buffer-local

evil-shift-width
The number of columns by which a line is shifted. This applies to the shifting operators > and <.

Default: 4, buffer-local

evil-shift-round
Whether shifting rounds to the nearest multiple. If non-nil, > and < adjust line indentation to the
nearest multiple of evil-shift-width.

Default: t, buffer-local

evil-indent-convert-tabs
If non-nil, the = operator converts between leading tabs and spaces. Whether tabs are converted to
spaces or vice versa depends on the value of indent-tabs-mode.

Default: t

2.5 Cursor movement

In standard Emacs terms, the cursor is generally understood to be located between two characters. In Vim,
and therefore also Evil, this is the case in insert state, but in other states the cursor is understood to be on a
character, and that this character is not a newline.

2.3. Search 5

Evil, Release 1.13.1

Forcing this behaviour in Emacs is the source of some potentially surprising results (especially for tradi-
tional Emacs users—users used to Vim may find the default behavior to their satisfaction). Many of them
can be tweaked using the following variables.

evil-repeat-move-cursor
Whether repeating commands with . may move the cursor. If nil, the original cursor position is
preserved, even if the command normally would have moved the cursor.

Default: t

evil-move-cursor-back
Whether the cursor is moved backwards when exiting insert state. If non-nil, the cursor moves “back-
wards” when exiting insert state, so that it ends up on the character to the left. Otherwise it remains
in place, on the character to the right.

Default: t

evil-move-beyond-eol
Whether the cursor can move past the end of the line. If non-nil, the cursor is allowed to move one
character past the end of the line, as in Emacs.

Default: nil

evil-cross-lines
Whether horizontal motions may move to other lines. If non-nil, certain motions that conventionally
operate in a single line may move the cursor to other lines. Otherwise, they are restricted to the
current line. This applies to h, SPC, f, F, t, T, ~.

Default: nil

evil-respect-visual-line-mode
Whether movement commands respect visual-line-mode. If non-nil, visual-line-mode is generally
respected when it is on. In this case, motions such as j and k navigate by visual lines (on the screen)
rather than “physical” lines (defined by newline characters). If nil, the setting of visual-line-mode is
ignored.

This variable must be set before Evil is loaded.

Default: nil

evil-track-eol
Whether $ “sticks” the cursor to the end of the line. If non-nil, vertical motions after $ maintain the
cursor at the end of the line, even if the target line is longer. This is analogous to track-eol, but
respects Evil’s interpretation of end-of-line.

Default: t

2.6 Cursor display

A state may change the appearance of the cursor. Use the variable evil-default-cursor to set the default
cursor, and the variables evil-normal-state-cursor, evil-insert-state-cursor etc. to set the cursors for
specific states. The acceptable values for all of them are the same.

evil-default-cursor
The default cursor. May be a cursor type as per cursor-type, a color string as passed to
set-cursor-color, a zero-argument function for changing the cursor, or a list of the above.

Default: t

6 Chapter 2. Settings

Evil, Release 1.13.1

2.7 Window management

evil-auto-balance-windows
If non-nil window creation and deletion trigger rebalancing.

Default: t

evil-split-window-below
If non-nil split windows are created below.

Default: nil

evil-vsplit-window-right
If non-nil vertically split windows with are created to the right.

Default: nil

2.8 Parenthesis highlighting

These settings concern the integration between Evil and show-paren-mode. They take no effect if this mode
is not enabled.

evil-show-paren-range
The minimal distance between point and a parenthesis which causes the parenthesis to be highlighted.

Default: 0

evil-highlight-closing-paren-at-point-states
The states in which the closing parenthesis at point should be highlighted. All states listed here
highlight the closing parenthesis at point (which is Vim’s default behavior). All others highlight the
parenthesis before point (which is Emacs default behavior). If this list contains the symbol not then
its meaning is inverted, i.e. all states listed here highlight the closing parenthesis before point.

Default: (not emacs insert replace)

2.9 Miscellaneous

evil-want-fine-undo
Whether actions are undone in several steps. There are two possible choices: nil (“no”) means that all
changes made during insert state, including a possible delete after a change operation, are collected
in a single undo step. Non-nil (“yes”) means that undo steps are determined according to Emacs
heuristics, and no attempt is made to aggregate changes.

For backward compatibility purposes, the value fine is interpreted as nil. This option was removed
because it did not work consistently.

Default: nil

evil-backspace-join-lines
Whether backward delete in insert state may join lines.

Default: t

evil-kbd-macro-suppress-motion-error
Whether left/right motions signal errors in keyboard macros. This variable only affects beginning-
of-line or end-of-line errors regarding the motions h and SPC respectively. This may be desired since
such errors cause macro definition or execution to be terminated. There are four possibilities:

2.7. Window management 7

Evil, Release 1.13.1

• record: errors are suppressed when recording macros, but not when replaying them.

• replay: errors are suppressed when replaying macros, but not when recording them.

• t: errors are suppressed in both cases.

• nil: errors are never suppressed.

Default: nil

evil-mode-line-format
The position of the state tag in the mode line. If set to before or after, the tag is placed at the
beginning or the end of the mode-line, respectively. If nil, there is no tag. Otherwise it should be
a cons cell (WHERE . WHICH), where WHERE is either before or after, and WHICH is a symbol in
mode-line-format. The tag is then placed before or after that symbol, respectively.

Default: before

evil-mouse-word
The thing-at-point symbol for double click selection. The double-click starts visual state in a special
word selection mode. This symbol is used to determine the words to be selected. Possible values are
evil-word or evil-WORD.

Default: evil-word

evil-bigword
The set of characters to be interpreted as WORD boundaries. This is enclosed with square brackets and
used as a regular expression. By default, whitespace characters are considered WORD boundaries.

Default: "^ \t\r\n", buffer-local

evil-esc-delay
The time, in seconds, to wait for another key after escape. If no further event arrives during this time,
the event is translated to ESC. Otherwise, it is translated according to input-decode-map. This does not
apply in Emacs state, and may also be inhibited by setting evil-inhibit-esc.

Default: 0.01

evil-intercept-esc
Whether Evil should intercept the escape key. In the terminal, escape and a meta key sequence both
generate the same event. In order to distingush these, Evil uses input-decode-map. It is not necessary
to do this in a graphical Emacs session. However, if you prefer to use C-[as escape (which is identical
to the terminal escape key code), this interception must also happen in graphical Emacs sessions. Set
this variable to always, t (only in the terminal) or nil (never intercept).

Default: always

evil-kill-on-visual-paste
Whether pasting in visual state adds the replaced text to the kill ring, making it the default for the
next paste. The default, replicates the default Vim behavior.

Default: t

evil-echo-state
Whether to signal the current state in the echo area.

Default: t

evil-complete-all-buffers
Whether completion looks for matches in all buffers. This applies to C-n and C-p in insert state.

Default: t

8 Chapter 2. Settings

CHAPTER 3

Keymaps

Evil’s key bindings are stored in a number of different keymaps. Each state has a global keymap, where the
default bindings for that state are stored. They are named evil-normal-state-map, evil-insert-state-map,
and so on. The bindings in these maps are visible in all buffers currently in the corresponding state.

These keymaps function like ordinary Emacs keymaps and may be modified using the Emacs function
define-key:

(define-key evil-normal-state-map (kbd "w") 'some-function)

This binds the key w to the command some-function in normal state. The use of kbd is optional for simple
key sequences, like this one, but recommended in general.

Most of Evil’s bindings are defined in the file evil-maps.el.

To facilitate shared keybindings between states, some states may activate keybindings from other states as
well. For example, motion state bindings are visible in normal and visual state, and normal state bindings
are also visible in visual state.

Each state also has a buffer-local keymap which is specific to the current buffer, and which takes prece-
dence over the global keymap. These maps are most suitably modified by a mode hook. They are named
evil-normal-state-local-map, evil-insert-state-local-map, and so on.

(add-hook 'some-mode-hook
(lambda ()

(define-key evil-normal-state-local-map
(kbd "w") 'some-function)))

For convenience, the functions evil-global-set-key and evil-local-set-key are available for setting
global and local state keys.

(evil-global-set-key STATE KEY DEF)
Bind KEY to DEF in STATE.

(evil-local-set-key STATE KEY DEF)
Bind KEY to DEF in STATE in the current buffer.

The above examples could therefore have been written as follows:

9

Evil, Release 1.13.1

(evil-global-set-key 'normal (kbd "w") 'some-function)

(add-hook 'some-mode-hook
(lambda ()

(evil-local-set-key 'normal (kbd "w") 'some-function)))

3.1 evil-define-key

Evil provides the macro evil-define-key for adding state bindings to ordinary keymaps. It is quite pow-
erful, and is the preferred method for fine-tuning bindings to activate in specific circumstances.

(evil-define-key STATE KEYMAP KEY DEF [BINDINGS...])
Create a STATE binding from KEY to DEF for KEYMAP. STATE is one of normal, insert, visual,
replace, operator, motion, emacs, or a list of one or more of these. Omitting a state by using nil
corresponds to a standard Emacs binding using define-key. The remaining arguments are like those
of define-key. For example:

(evil-define-key 'normal foo-map "a" 'bar)

This creates a binding from a to bar in normal state, which is active whenever foo-map is active. Using
nil for the state, the following lead to identical bindings:

(evil-define-key nil foo-map "a" 'bar)
(define-key foo-map "a" 'bar)

It is possible to specify multiple states and/or bindings at once:

(evil-define-key '(normal visual) foo-map
"a" 'bar
"b" 'foo)

If foo-map has not been initialized yet, this macro adds an entry to after-load-functions, delaying
execution as necessary.

KEYMAP may also be a quoted symbol. If the symbol is global, the global evil keymap corresponding
to the state(s) is used, meaning the following lead to identical bindings:

(evil-define-key 'normal 'global "a" 'bar)
(evil-global-set-key 'normal "a" 'bar)

The symbol local may also be used, which corresponds to using evil-local-set-key. If a quoted
symbol is used that is not global or local, it is assumed to be the name of a minor mode, in which
case evil-define-minor-mode-key is used.

There follows a brief overview of the main functions of this macro.

• Define a binding in a given state

(evil-define-key 'state 'global (kbd "key") 'target)

• Define a binding in a given state in the current buffer

(evil-define-key 'state 'local (kbd "key") 'target)

• Define a binding in a given state under the foo-mode major mode.

10 Chapter 3. Keymaps

Evil, Release 1.13.1

(evil-define-key 'state foo-mode-map (kbd "key") 'target)

Note that foo-mode-map is unquoted, and that this form is safe before foo-mode-map is loaded.

• Define a binding in a given state under the bar-mode minor mode.

(evil-define-key 'state 'bar-mode (kbd "key") 'target)

Note that bar-mode is quoted, and that this form is safe before bar-mode is loaded.

The macro evil-define-key can be used to augment existing modes with state bindings, as well as creating
packages with custom bindings. For example, the following will create a minor mode foo-mode with normal
state bindings for the keys w and e:

(define-minor-mode foo-mode
"Foo mode."
:keymap (make-sparse-keymap))

(evil-define-key 'normal 'foo-mode "w" 'bar)
(evil-define-key 'normal 'foo-mode "e" 'baz)

This minor mode can then be enabled in any buffers where the custom bindings are desired:

(add-hook 'text-mode-hook 'foo-mode) ; enable alongside text-mode

3.2 Leader keys

Evil supports a simple implementation of Vim’s leader keys. To bind a function to a leader key you can use
the expression <leader> in a key mapping, e.g.

(evil-define-key 'normal 'global (kbd "<leader>fs") 'save-buffer)

Likewise, you can use the expression <localleader> to mimic Vim’s local leader, which is designed for
mode-specific key bindings.

You can use the function evil-set-leader to designate which key acts as the leader and the local leader.

(evil-set-leader STATE KEY [LOCALLEADER])
Set KEY to trigger leader bindings in STATE. KEY should be in the form produced by kbd. STATE is
one of normal, insert, visual, replace, operator, motion, emacs, a list of one or more of these, or nil,
which means all of the above. If LOCALLEADER is non-nil, set the local leader instead.

3.2. Leader keys 11

Evil, Release 1.13.1

12 Chapter 3. Keymaps

CHAPTER 4

Hooks

A hook is a list of functions that are executed when certain events happen. Hooks are modified with
the Emacs function add-hook. Evil provides entry and exit hooks for all its states. For example,
when switching from normal state to insert state, all functions in evil-normal-state-exit-hook and
evil-insert-state-entry-hook are executed.

It is guaranteed that the exit hook will be executed before the entry hook on all state switches.

During the hook execution, the variables evil-next-state and evil-previous-state contain information
about the states being switched to and from, respectively.

13

Evil, Release 1.13.1

14 Chapter 4. Hooks

CHAPTER 5

Extension

The main functionality of Evil is implemented in terms of reusable macros. Package writers can use these
to define new commands.

5.1 Motions

A motion is a command which moves the cursor, such as w or e. Motions are defined with the macro
evil-define-motion. Motions not defined in this way should be declared with evil-declare-motion.

(evil-declare-motion COMMAND)
Declare COMMAND to be a movement function. This ensures that it behaves correctly in visual state.

(evil-define-motion MOTION (COUNT ARGS...) DOC [[KEY VALUE]...] BODY...)
Define a motion command MOTION. ARGS is a list of arguments. Motions can have any number of
arguments, but the first (if any) has the predefined meaning of count. BODY must execute the motion
by moving point.

Optional keyword arguments are:

• :type - determines how the motion works after an operator (one of inclusive, line, block and
exclusive, or a self-defined motion type)

• :jump - if non-nil, the previous position is stored in the jump list, so that it can be restored with
C-o

For example, this is a motion that moves the cursor forward by a number of characters:

(evil-define-motion foo-forward (count)
"Move to the right by COUNT characters."
:type inclusive
(forward-char (or count 1)))

The type of a motion determines how it works when used together with an operator. Inclusive motions
include the endpoint in the range being operated on, while exclusive motions do not. Line motions extend

15

Evil, Release 1.13.1

the whole range to linewise positions, effectively behaving as if the endpoint were really at the end of the
line. Blockwise ranges behave as a “rectangle” on screen rather than a contiguous range of characters.

5.2 Operators

An operator is a command that acts on the text moved over by a motion, such as c (change), d (delete) or y
(yank or copy, not to be confused with “yank” in Emacs terminology which means paste).

(evil-define-operator OPERATOR (BEG END ARGS...) DOC [[KEY VALUE]...] BODY...)
Define an operator command OPERATOR. The operator acts on the range of characters BEG through
END. BODY must execute the operator by potentially manipulating the buffer contents, or otherwise
causing side effects to happen.

Optional keyword arguments are:

• :type - force the input range to be of a given type (inclusive, line, block, and exclusive, or a
self-defined motion type).

• :motion - use a predetermined motion instead of waiting for one from the keyboard. This does
not affect the behavior in visual state, where selection boundaries are always used.

• :repeat - if non-nil (default), then . will repeat the operator.

• :move-point - if non-nil (default), the cursor will be moved to the beginning of the range before
the body executes

• :keep-visual - if non-nil, the selection is not disabled when the operator is executed in visual
state. By default, visual state is exited automatically.

For example, this is an operator that performs ROT13 encryption on the text under consideration:

(evil-define-operator evil-rot13 (beg end)
"ROT13 encrypt text."
(rot13-region beg end))

Binding this to g? (where it is by default) will cause a key sequence such as g?w to encrypt from the current
cursor to the end of the word.

5.3 Text objects

Text objects are like motions in that they define a range over which an operator may act. Unlike motions,
text objects can set both a beginning and an endpoint. In visual state, text objects alter both ends of the
selection.

Text objects are not directly usable in normal state. Instead, they are bound in the two keymaps
evil-inner-text-ojects-map and evil-outer-text-objects-map, which are available in visual and
operator-pending state under the keys i and a respectively.

(evil-define-text-object OBJECT (COUNT) DOC [[KEY VALUE]...] BODY...)
Define a text object command OBJECT. BODY should return a range (BEG END) to the right of point if
COUNT is positive, and to the left of it if negative.

Optional keyword arguments:

• :type - determines how the range applies after an operator (inclusive, line, block, and
exclusive, or a self-defined motion type).

16 Chapter 5. Extension

Evil, Release 1.13.1

• :extend-selection - if non-nil (default), the text object always enlarges the current selection.
Otherwise, it replaces the current selection.

For eample, this is a text object which selects the next three characters after the current location:

(evil-define-text-object foo (count)
"Select three characters."
(list (point) (+ 3 (point))))

For convenience, Evil provides several functions returning a list of positions which can be used for defining
text objects. All of them follow the convention that a positive count selects text after the current location,
while negative count selects text before it.

Note: The thingatpt library is used quite extensively in Evil to define text objects, and this dependency
leaks through in the following functions. A thing in this context is any symbol for which there is a function
called forward-THING1 which moves past a number of things.

(evil-select-inner-object THING BEG END TYPE [COUNT LINE])
Return an inner text object range of COUNT objects. If COUNT is positive, return objects following
point; if COUNT is negative, return objects preceding point. If one is unspecified, the other is used
with a negative argument. THING is a symbol understood by thing-at-point. BEG, END and TYPE
specify the current selection. If LINE is non-nil, the text object should be linewise, otherwise it is
character wise.

(evil-select-an-object THING BEG END TYPE COUNT [LINE])
Return an outer text object range of COUNT objects. If COUNT is positive, return objects following
point; if COUNT is negative, return objects preceding point. If one is unspecified, the other is used
with a negative argument. THING is a symbol understood by thing-at-point. BEG, END and TYPE
specify the current selection. If LINE is non-nil, the text object should be linewise, otherwise it is
character wise.

(evil-select-paren OPEN CLOSE BEG END TYPE COUNT [INCLUSIVE])
Return a range (BEG END) of COUNT delimited text objects. OPEN and CLOSE specify the open-
ing and closing delimiter, respectively. BEG END TYPE are the currently selected (visual) range. If
INCLUSIVE is non-nil, OPEN and CLOSE are included in the range; otherwise they are excluded.

The types of OPEN and CLOSE specify which kind of THING is used for parsing with
evil-select-block. If OPEN and CLOSE are characters evil-up-paren is used. Otherwise OPEN
and CLOSE must be regular expressions and evil-up-block is used.

If the selection is exclusive, whitespace at the end or at the beginning of the selection until the end-of-
line or beginning-of-line is ignored.

5.4 Range types

A type is a transformation acting on a pair of buffer positions. Evil defines the types inclusive, line, block
and exclusive, which are used for motion ranges and visual selection. New types may be defined with the
macro evil-define-type.

(evil-define-type TYPE DOC [[KEY FUNC]...])
Define type TYPE. DOC is a general description and shows up in all docstrings.

Optional keyword arguments:

1 There are many more ways that a thing can be defined, but the definition of forward-THING is perhaps the most straightforward
way to go about it.

5.4. Range types 17

Evil, Release 1.13.1

• :expand - expansion function. This function should accept two positions in the current buffer,
BEG and END,and return a pair of expanded buffer positions.

• :contract - the opposite of :expand. Optional.

• :one-to-one - non-nil if expansion is one-to-one. This means that :expand followed by :contract
always return the original range.

• :normalize - normalization function. This function should accept two unexpanded positions
and adjust them before expansion. May be used to deal with buffer boundaries.

• :string - description function. Takes two buffer positions and returns a human-readable string.
For example “2 lines”

If further keywords and functions are specified, they are assumed to be transformations on buffer
positions, like :expand and :contract.

5.5 States

States are defined with the macro evil-define-state, which takes care to define the necessary
hooks, keymaps and variables, as well as a toggle function evil-NAME-state and a predicate function
evil-NAME-state-p for checking whether the state is active.

(evil-define-state STATE DOC [[KEY VAL]...] BODY...)
Define an Evil state STATE. DOC is a general description and shows up in all docstrings; the first line
of the string should be the full name of the state.

BODY is executed each time the state is enabled or disabled.

Optional keyword arguments:

• :tag - the mode line indicator, e.g. “<T>”.

• :message - string shown in the echo area when the state is activated.

• :cursor - default cursor specification.

• :enable - list of other state keymaps to enable when in this state.

• :entry-hook - list of functions to run when entering this state.

• :exit-hook - list of functions to run when exiting this state.

• :suppress-keymap - if non-nil, effectively disables bindings to self-insert-command by making
evil-suppress-map the parent of the global state keymap.

The global keymap of this state will be evil-test-state-map, the local keymap will be
evil-test-state-local-map, and so on.

For example:

(evil-define-state test
"Test state."
:tag " <T> "
(message (if (evil-test-state-p)

"Enabling test state."
"Disabling test state.")))

18 Chapter 5. Extension

CHAPTER 6

Frequently Asked Questions

6.1 Problems with the escape key in the terminal

A common problem when using Evil in terminal mode is a certain delay after pressing the escape key.
Even more, when pressing the escape key followed quickly by another key the command is recognized as
M-<key> instead of two separate keys: ESC followed by <key>. In fact, it is perfectly valid to simulate M-<key>
by pressing ESC <key> quickly (but see below).

The reason for this is that in terminal mode a key sequence involving the meta key (or alt key) always
generates a so called “escape sequence”, i.e. a sequence of two events sent to Emacs, the first being ESC and
the second the key pressed simultaneously. The problem is that pressing the escape key itself also generates
the ESC event. Thus, if Emacs (and therefore Evil) receives an ESC event there is no way to tell whether the
escape key has been pressed (and no further event will arrive) or a M-<key> combination has been pressed
(and the <key> event will arrive soon). In order to distinguish both situations Evil does the following. After
receiving an ESC event Evil waits for a short time period (specified by the variable evil-esc-delay which
defaults to 0.01 seconds) for another event. If no other event arrives Evil assumes that the plain escape key
has been pressed, otherwise it assumes a M-<key> combination has been pressed and combines the ESC event
with the second one. Because a M-<key> sequence usually generates both events in very quick succession,
0.01 seconds are usually enough and the delay is hardly noticeable by the user.

If you use a terminal multiplexer like tmux or screen the situation may be worse. These multiplexers have
exactly the same problem recognizing M-<key> sequences and often introduce their own delay for the ESC
key. There is no way for Evil to influence this delay. In order to reduce it you must reconfigure your terminal
multiplexer.

Note that this problem should not arise when using Evil in graphical mode. The reason is that in this
case the escape key itself generates a different command, namely escape (a symbol) and hence Evil can
distinguish whether the escape key or a M-<key> combination has been pressed. But this also implies that
pressing ESC followed by <key> cannot be used to simulate M-<key> in graphical mode!

19

Evil, Release 1.13.1

6.2 Underscore is not a word character

An underscore _ is a word character in Vim. This means that word motions like w skip over underlines in a
sequence of letters as if it was a letter itself. In contrast, in Evil the underscore is often a non-word character
like operators, e.g. +.

The reason is that Evil uses Emacs’ definition of a word and this definition does often not include the
underscore. In Emacs word characters are determined by the syntax-class of the buffer. The syntax-class
usually depends on the major-mode of this buffer. This has the advantage that the definition of a “word”
may be adapted to the particular type of document being edited. Evil uses Emacs’ definition and does
not simply use Vim’s definition in order to be consistent with other Emacs functions. For example, word
characters are exactly those characters that are matched by the regular expression character class [:word:].

If you want the underscore to be recognised as word character, you can modify its entry in the syntax-table:

(modify-syntax-entry ?_ "w")

This gives the underscore the ‘word’ syntax class. You can use a mode-hook to modify the syntax-table in
all buffers of some mode, e.g.:

(add-hook 'c-mode-common-hook
(lambda () (modify-syntax-entry ?_ "w")))

This gives the underscore the word syntax-class in all C-like buffers.

Alternatively, many find that motion by symbols is more convenient than motion by words. One way to
make word motions operate as symbol motions is to alias the evil-word thing1 to the evil-symbol thing:

(defalias 'forward-evil-word 'forward-evil-symbol)

1 Many of Evil’s text objects and motions are defined in terms of the thingatpt library, which in this case are defined entirely in terms
of forward-THING functions. Thus aliasing one to another should make all motions and text objects implemented in terms of that thing
behave the same.

20 Chapter 6. Frequently Asked Questions

CHAPTER 7

Internals

7.1 Command properties

Evil defines command properties to store information about commands1, such as whether they should be
repeated. A command property is a :keyword with an associated value, e.g. :repeat nil.

(evil-add-command-properties COMMAND [PROPERTIES...])
Add PROPERTIES to COMMAND. PROPERTIES should be a property list. To replace all properties
at once, use evil-set-command-properties.

(evil-set-command-properties COMMAND [PROPERTIES...])
Replace all of COMMAND’s properties with PROPERTIES. PROPERTIES should be a property list.
This erases all previous properties; to only add properties, use evil-set-command-property.

(evil-get-command-properties COMMAND)
Return all Evil properties of COMMAND. See also evil-get-command-property.

(evil-get-command-property COMMAND PROPERTY [DEFAULT])
Return the value of Evil PROPERTY of COMMAND. If the command does not have the property,
return DEFAULT. See also evil-get-command-properties.

(evil-define-command COMMAND (ARGS...) DOC [[KEY VALUE]...] BODY...)
Define a command COMMAND.

For setting repeat properties, use the following functions:

(evil-declare-repeat COMMAND)
Declare COMMAND to be repeatable.

(evil-declare-not-repeat COMMAND)
Declare COMMAND to be nonrepeatable.

(evil-declare-change-repeat COMMAND)
Declare COMMAND to be repeatable by buffer changes rather than keystrokes.

1 In this context, a command may mean any Evil motion, text object, operator or indeed other Emacs commands, which have not
been defined through the Evil machinery.

21

Evil, Release 1.13.1

22 Chapter 7. Internals

CHAPTER 8

The GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (c) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

23

http://fsf.org/

Evil, Release 1.13.1

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for input to text format-
ters or for automatic translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or absence of markup, has been ar-
ranged to thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those

24 Chapter 8. The GNU Free Documentation License

Evil, Release 1.13.1

of this License. You may not use technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on
the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistribut-
ing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of
the Document (all of its principal authors, if it has fewer than five), unless they release you from
this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright no-
tices.

25

Evil, Release 1.13.1

F. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section Entitled “History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you may not add another;
but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all

26 Chapter 8. The GNU Free Documentation License

Evil, Release 1.13.1

of the Invariant Sections of all of the original documents, unmodified, and list them all as Invari-
ant Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original doc-
uments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowl-
edgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorse-
ments.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond
what the individual works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permis-
sion from their copyright holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the re-
quirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will

27

Evil, Release 1.13.1

automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.
org/copyleft.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Docu-
ment does not specify a version number of this License, you may choose any version ever pub-
lished (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s public statement of
acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

28 Chapter 8. The GNU Free Documentation License

http://www.gnu.org/copyleft
http://www.gnu.org/copyleft

Emacs lisp functions and variables

A
evil-add-command-properties (function), 21
evil-auto-balance-windows (variable), 7
evil-auto-indent (variable), 5

B
evil-backspace-join-lines (variable), 7
evil-bigword (variable), 8
evil-buffer-regexps (variable), 4

C
evil-complete-all-buffers (variable), 8
evil-cross-lines (variable), 6

D
evil-declare-change-repeat (function), 21
evil-declare-motion (function), 15
evil-declare-not-repeat (function), 21
evil-declare-repeat (function), 21
evil-default-cursor (variable), 6
evil-default-state (variable), 3
evil-define-command (macro), 21
evil-define-key (macro), 10
evil-define-motion (macro), 15
evil-define-operator (macro), 16
evil-define-state (macro), 18
evil-define-text-object (macro), 16
evil-define-type (macro), 17
evil-disable-insert-state-bindings (variable), 4

E
evil-echo-state (variable), 8
evil-esc-delay (variable), 8
evil-ex-hl-update-delay (variable), 5

F
evil-flash-delay (variable), 5

G
evil-get-command-properties (function), 21
evil-get-command-property (function), 21
evil-global-set-key (function), 9

H
evil-highlight-closing-paren-at-point-states

(variable), 7

I
evil-indent-convert-tabs (variable), 5
evil-intercept-esc (variable), 8

K
evil-kbd-macro-suppress-motion-error (variable),

7
evil-kill-on-visual-paste (variable), 8

L
evil-local-set-key (function), 9

M
evil-mode-line-format (variable), 8
evil-mouse-word (variable), 8
evil-move-beyond-eol (variable), 6
evil-move-cursor-back (variable), 6

R
evil-regexp-search (variable), 5
evil-repeat-move-cursor (variable), 6
evil-respect-visual-line-mode (variable), 6

S
evil-search-wrap (variable), 5
evil-select-an-object (function), 17
evil-select-inner-object (function), 17
evil-select-paren (function), 17
evil-set-command-properties (function), 21

29

Evil, Release 1.13.1

evil-set-initial-state (function), 3
evil-set-leader (function), 11
evil-shift-round (variable), 5
evil-shift-width (variable), 5
evil-show-paren-range (variable), 7
evil-split-window-below (variable), 7

T
evil-toggle-key (variable), 4
evil-track-eol (variable), 6

V
evil-vsplit-window-right (variable), 7

W
evil-want-C-d-scroll (variable), 4
evil-want-C-i-jump (variable), 4
evil-want-C-u-delete (variable), 4
evil-want-C-u-scroll (variable), 4
evil-want-C-w-delete (variable), 4
evil-want-C-w-in-emacs-state (variable), 4
evil-want-fine-undo (variable), 7
evil-want-Y-yank-to-eol (variable), 4

30 Emacs lisp functions and variables

	Overview
	Installation via package.el
	Manual installation
	Modes and states

	Settings
	The initial state
	Keybindings and other behaviour
	Search
	Indentation
	Cursor movement
	Cursor display
	Window management
	Parenthesis highlighting
	Miscellaneous

	Keymaps
	evil-define-key
	Leader keys

	Hooks
	Extension
	Motions
	Operators
	Text objects
	Range types
	States

	Frequently Asked Questions
	Problems with the escape key in the terminal
	Underscore is not a word character

	Internals
	Command properties

	The GNU Free Documentation License
	Emacs lisp functions and variables

